本书专注于介绍基于深度学习的算法。从探索深度学习的数学基础和理论架构,到九大经典的深度学习算法,旨在为读者提供一个从基础到高级的全方位指导。截至2024年,书中介绍的9个算法几乎涵盖了整个深度学习领域的经典和前沿算法。 本书在第1章和第2章介绍了深度学习的基础:数学基础与神经网络算法。从第3章开始,书籍逐步引领读者进入深度学习的核心领域,即一些基于神经网络的变体算法:卷积神经网络、循环神经网络、编码器-解码器模型,以及目前火热的变形金刚算法、生成对抗网络和扩散模型。这些章节不仅讲解了各个模型的基础理论和关键技术,还详细介绍了这些模型在自然语言处理、计算机视觉等领域的应用案例。书籍的后半部分聚焦于图神经网络和强化学习这些前沿算法,深入浅出地讲解了它们的基础知识、算法变体及经典模型等高级话题。这些内容为读者理解和应用深度学习技术提供了坚实的理论基础。 本书适合对深度学习领域感兴趣的本科生、研究生及相关行业的从业者阅读。本书旨在帮助读者掌握深度学习的核心技术,激发创新思维,推动个人和行业的发展。