本书是《算法设计与分析(第4版)》配套辅助教材。本书将结合原教材的内容,进一步讨论和讲解原教材中的重点和难点,问题分析,求解思路和方法,为读者深刻体会问题求解的核心思想提供帮助。由于原教材的内容有一定的深度和难度,读者在学习和解答习题过程中会遇到一定的困难,因此本书选择了原教材的一些典型的习题和难题,给出详细的解答和分析。 本书内容丰富,观点新颖,理论联系实际。不仅可用作高等学校计算机专业本科生和研究生学习计算机算法设计的教材,而且也适合广大工程技术人员和自学读者学习参考。
为了适应培养我国21世纪计算机各类人才的需要,结合我国高等学校教育工作的现状,立足培养学生能跟上国际计算机科学技术的发展水平,更新教学内容和教学方法,提高教学质量,本书以算法设计策略为知识单元,系统地介绍计算机算法的设计方法与分析技巧,以期为计算机科学与技术学科的学生提供广泛而坚实的计算机算法基础知识。另有配套的《算法设计与分析(第4版)习题解答》,对本书的全部习题做了详尽的解答。 本书内容丰富,观点新颖,理论联系实际。不仅可用作高等学校计算机专业本科生和研究生学习计算机算法设计的教材,而且也适合广大工程技术人员和自学读者学习参考。
机器学习是计算机智能围棋博弈系统、无人驾驶汽车和工业界人工智能助理等新兴技术的灵魂,特别是深度学习理论更是诸多高精尖人工智能技术的核心。掌握机器学习理论与实践技术是学习现代人工智能科学最重要的一步。 本书既讲述机器学习算法的理论分析,也结合具体应用介绍它们在Python中的实现及使用方法。本书的第2到第9章主要介绍监督式学习算法。其中包括:监督式学习算法基础、线性回归算法、机器学习中的搜索算法、Logistic回归算法、支持向量机算法、决策树、神经网络和深度学习。随后,在第10与11这两章,着重介绍无监督学习算法。其中包括:降维算法和聚类算法。第12章中讲述强化学习的相关知识。在本书的附录中还提供了学习本书必备的数学基础知识和Python语言与机器学习工具库基本知识。 与其他机器学习类书籍相比,本书同时包含机器学习的算法理论和算法实践。希望通过课程的学习,读者能够从机器学习的理论基础和实际应用两个层面全面掌握其核心技术,同时计算思维能力得到显著提高,对于整个课程讲述的机器学习算法核心知识,能够知其然且知其所以然。同时着力培养读者的计算思维能力,使他们在面临实际应用的挑战时,能够以算法的观点思考问题,并灵活应用数学概念来设计出高效安全的解决方案。